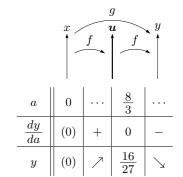
'14後期 理系 2

提出 年 月 日 名前

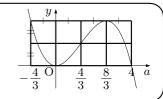
f(x) = ax(1-x) に対し, g(x) = f(f(x)) とする. ここで a は正の実数とする.

- (1) $g\left(\frac{1}{2}\right)$ を a の関数とみなす. その関数の最大値, およびそのときの a を求めよ.
- (2) $0 \le x \le 1$ において, g(x) が $x = \frac{1}{2}$ で最大値をとるような a の範囲を求めよ.
- (3) a が (2) で求めた範囲を動くとき, $g\left(\frac{1}{2}\right)$ の値が最大となる a を求めよ.

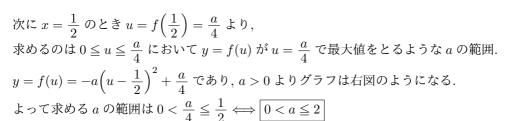

'14 後期 理系 2

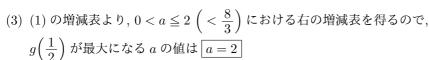
f(x) = ax(1-x) に対し, g(x) = f(f(x)) とする. ここで a は正の実数とする.

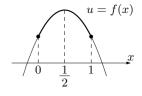
- (1) $g\left(\frac{1}{2}\right)$ を a の関数とみなす. その関数の最大値, およびそのときの a を求めよ.
- (2) $0 \le x \le 1$ において, g(x) が $x = \frac{1}{2}$ で最大値をとるような a の範囲を求めよ.
- (3) a が (2) で求めた範囲を動くとき, $g\left(\frac{1}{2}\right)$ の値が最大となる a を求めよ.

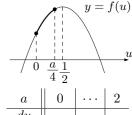

【方針】関数 $f(f(x))=a\{ax(1-x)\}\{1-ax(1-x)\}$ の式を相手にしない. u=f(x) とおくと, y=g(x)=f(u).

(1) $x = \frac{1}{2}$ のとぎ $u = f\left(\frac{1}{2}\right) = \frac{a}{4}$ より,	
$y = g\left(\frac{1}{2}\right) = f\left(\frac{a}{4}\right) = -\frac{1}{16}a^2(a-4) = -\frac{1}{16}(a^3 - 4a^2).$	
$\frac{dy}{da} = -\frac{1}{16}(3a^2 - 8a) = -\frac{1}{16}a(3a - 8)$ より右の増減表を得る.	
よって $\boxed{$ 最大値は $rac{16}{27}\left(a=rac{8}{3}$ のとき $ ight) }$	




One Point


3次関数のグラフの特徴から, $a=\frac{8}{3}$ で最大になることは 微分する前からわかっていなくてはいけないことです.



 $(2) \ u=f(x)=-a\Big(x-\frac{1}{2}\Big)^2+\frac{a}{4} \ \text{であり}, \ a>0 \ \text{よりグラフは右図のようになる}.$ よって $0\leq x\leq 1$ における u の値域は $0\leq u\leq \frac{a}{4}.$

