'10後期 理系 1

提出 年 月 日 名前

次の連立不等式の表す領域をDとする.

$$\begin{cases} x^2 + y^2 \le 25 \\ (y - 2x - 10)(y + x + 5) \le 0 \end{cases}$$

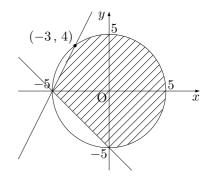
- (1) 領域 D を図示せよ.
- (2) 点 (x,y) がこの領域 D を動くとき, x+2y の最大値 M と最小値 m を求めよ. また, M, m を与える D の点を求めよ.
- (3) a を実数とする. 点 (x,y) が領域 D を動くとき, ax+y が点 (-3,4) で最大値をとるような a の範囲を求めよ.

'10 後期 理系 1

次の連立不等式の表す領域を D とする.

$$\begin{cases} x^2 + y^2 \le 25 \\ (y - 2x - 10)(y + x + 5) \le 0 \end{cases}$$

- (1) 領域 D を図示せよ.
- (2) 点 (x,y) がこの領域 D を動くとき, x+2y の最大値 M と最小値 m を求めよ. また, M, m を与える D の点を求めよ.
- (3) a を実数とする. 点 (x,y) が領域 D を動くとき, ax+y が点 (-3,4) で最大値をとるような a の範囲を求めよ.
- (1) 右図斜線部. 境界含む.



(2)【方針】逆像法

点 (x, y) がこの領域 D を動くときの x + 2y の値域を W とおく.

$$k \in W \iff \exists (x, y) (\in D), \ x + 2y = k$$

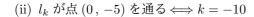
$$\iff$$
 直線 $l_k: x+2y-k=0$ が D と共有点を持つ \cdots ①

(i) l_k が円 $x^2+y^2=25$ と接する \iff l_k と O(0,0) の距離が 5 \iff $\frac{|k|}{\sqrt{5}}=5$

$$\iff \frac{|k|}{\sqrt{5}} = 5$$

$$\iff k = \pm 5\sqrt{5}$$

第 1 象限で接するときの
$$k$$
 の値は y 切片が正となるものなので $k=5\sqrt{5}$, 接点は $(\sqrt{5}, 2\sqrt{5})$.



(i), (ii) と右図より ① $\Longleftrightarrow -10 \le k \le 5\sqrt{5}$ なので $W: -10 \le x + 2y \le 5\sqrt{5}$.

よって
$$\begin{cases} M = 5\sqrt{5} & (x, y) = (\sqrt{5}, 2\sqrt{5}) \text{ のとぎ} \\ m = -10 & (x, y) = (0, -5) \text{ のとぎ} \end{cases}$$

 $(3) (-3, 4) \in D$ なので、

ax+y が点 (-3,4) で最大値をとる $\Longleftrightarrow \forall (x,y) (\in D), \ ax+y \leq -3a+4$ (2) ここで $E_a: ax + y \leq -3a + 4 \iff y \leq -a(x+3) + 4$ とおくと、

 E_a は定点 (-3,4) を通り傾き -a の直線およびその下側なので、

 $\textcircled{2} \Longleftrightarrow D \subset E_a$

$$\iff \frac{3}{4} \le -a \le 2$$
 (右図より) $\iff \boxed{-2 \le a \le -\frac{3}{4}}$

$$\iff \boxed{-2 \le a \le -\frac{3}{4}}$$

